

100

SIMULATION OF SLUG-FLOW CONDITION IN VALVES

PhD Eng. Răzvan MAHU PhD Eng. Prof. Florin POPESCU PhD Eng. Prof. Ion V. ION

ANSYS, Inc. Proprietary

- Case introduction
- Physical modeling options in 3D CFD
- Numerical modeling and simulation approach
- Numerical results
- Conclusions, Q&A

- A DN200 Valve at the end of a 20 m horizontal Pipe
- A 90° bend was placed at the Pipe inlet
- Operational conditions:
 - Inlet Total Pressure = 11 bar
 - Outlet Static Pressure = 1 bar
 - Pipe contains dry steam at 184°C and condensate (0.28 liquid fraction), all initially at rest

Case Intro (2)

- Valve position is "fully opened" at simulation start
- The system pressure is initially equal to Inlet Pressure; a downstream valve is opened, causing a decompression wave to travel upstream; at t = 0 s this wave is considered to have just reached system Outlet
- The simulation must determine the actual flow conditions (i.e. Slugging) and evaluate the corresponding flow properties

	Pros	Cons
VOF Model	 + Easy to implement and solve + Good interface tracking properties + Very stable 	 No phase slip, shared momentum and temperature fields Interface sharpness and detail strongly depends on mesh resolution
Eulerian Multi-Fluid Model	 + Solves a set of transport eq. for each phase → strong interphase coupling + High accuracy for most flow regimes 	 Difficult to implement and solve Inherently diffuse interface Large CPU and memory requirements Low numerical stability
Hybrid Models	 Have all the advantages of both VOF and Eulerian models 	Computationally intensiveLow numerical stability

Physical Modeling (3)

• Model equations (RANS)

- Momentum:
- Energy:
- Volume fraction:

Turbulence modeling

- SST k-omega model with:
 - Curvature correction & Compressibility effects
 - Turbulence production limiting & Interface turbulence damping control

Material properties

- All mixture properties: ho= $\sum lpha_q
 ho_q$
- Both phases are treated as compressible fluids!
 - Steam modeled as Ideal Gas: $\rho = \frac{p_{op} + p}{\frac{R}{M_{out}}T}$
 - Condensate modeled using a simplified form of Tait eq.:

$$\frac{\partial}{\partial t}(\rho\vec{v}) + \nabla \cdot (\rho\vec{v}\vec{v}) = -\nabla p + \nabla \cdot \left[\mu\left(\nabla\vec{v}+\nabla\vec{v}^{T}\right)\right] + \rho\vec{g} + \vec{F}$$
$$\frac{\partial}{\partial t}(\rho E) + \nabla \cdot (\vec{v}(\rho E + p)) = \nabla \cdot (k_{eff}\nabla T) + S_{h}$$
$$\frac{1}{\rho_{q}}\left[\frac{\partial}{\partial t}(\alpha_{q}\rho_{q}) + \nabla \cdot (\alpha_{q}\rho_{q}\vec{v}_{q}) = S_{\alpha_{q}} + \sum_{p=1}^{n} (\dot{m}_{q} - \dot{m}_{qp})\right]$$

$$\left(\frac{\rho}{\rho_0}\right)^n = \frac{K}{K_0} \qquad \begin{array}{c} K = K_0 + n\Delta p \\ \Delta p = p - p_0 \end{array} \qquad c = \sqrt{\frac{K}{\rho}} \end{array}$$

Numerical Modeling & Simulation

The computational domain was reduced to half using the longitudinal symmetry plane

UNIVERS

GALATIENS

 A hybrid meshing technique was used, with a pipe-to-valve nonconformal interface to reduce mesh size

Numerical Modeling & Simulation (2)

Boundary conditions

- Pipe inlet: PRESSURE-INLET, $p_{total} = 11$ bar, t = 184°C, no liquid
- Valve outlet: PRESSURE-OUTLET, $p_{static} = 1$ bar
- Pipe & valve walls: WALL, adiabatic
- ZX plane: SYMMETRY

Numerical solver

- Fully coupled pressure-based solver (pressure, velocity, volume fraction)

Spatial discretization

- Gradient: Green-Gauss node-based
- Pressure: PRESTO
- All other eq.: Second-order Upwind

Interface tracking

- Implicit Compressive scheme: $\alpha_f = \alpha_d + \beta \nabla \alpha_d \cdot d\vec{r}$ with $\beta = 2$
- Temporal discretization
 - Bounded Second-order Upwind

Numerical Results

• Observations:

- Initially, the steam flow is strictly kept under control by the large pressure drop induced by the condensate almost filling the upstream valve branch
- As the condensate pool is removed by the flowing steam, the total mass flow increases steadily, while the main pressure loss source is the valve itself

Numerical Results (2)

• Observations (cont.):

 Due to the 90° bend flow conditions, the first slug starts forming directly at the bend-pipe junction

Numerical Results (3)

GALATIENSIS

• Observations (cont.):

 However, completely independently, a second slug spontaneously appears around mid-pipe shortly after

Numerical Results (4)

• Observations (cont.):

- Soon, both slugs develop fully and the second slug starts entering the valve

Numerical Results (5)

• Observations (cont.):

 The distance between slugs, their velocity and the pressure drop across the individual slug seems to remain roughly constant over time

Numerical Results (6)

• Observations (cont.):

- Local regions of very low static pressure are present, suggesting that a mass transfer mechanism should be implemented to capture condensate vaporization
- Slug impact and break-up on valve walls causes high shear stresses (> 5000 Pa)

Numerical Results (7)

• The variable time-step size disrupts the fluidity of the animation...

- The simulation value is rather of a qualitative nature, as no experimental data (or any other source) was available for validation
- Nevertheless, it was only meant as a test designed to assess if in a specific practical situation the slug-flow regime was possible, for which "classic" methods simply could not have been applied
- Following this work, the inherent limitations of the VOF modeling approach would need to be addressed and evaluated by direct comparison to a second model using a Hybrid method