# LSM 710

The Power of Sensitivity



A New Dimension in Confocal Laser Scanning Microscopy







We make it visible.

184

POS COM Ana 2 Ornalia Terrain gentra Recolution of proceeding and a Reconstruction of party of the Reconstruction of party of the second at the Original of the second at the NR S22/11:03.2014

| LSM 710 – providing support for<br>progress and innovation                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Sensitivity is the key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8          |
| Flexibility in all areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10         |
| Unique precision and reproducibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12         |
| Maximum ease of use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13         |
| More possibilities with living cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14         |
| Integrated special imaging modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16         |
| Multiphoton imaging without<br>compromise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18         |
| Confocal microscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20         |
| Innovations in detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22         |
| ZEN Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24         |
| Technical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26         |
| System overview<br>The universal system for all applications<br>File illustration:<br>Prosophila Embrya, colored with CDS- GEP<br>(green, Glia colls) and Gy3 (red, andor noucous<br>Specimen: H: Aberic University, of Milineer,<br>Institute for Naturabiology; Gernary:<br>Page 3:<br>Innervinion of dorsal body musculature close<br>to the heart of Drosophila melanogaster.<br>Red: anti-a Spectrin coloring. Green: GEP<br>expressed in heart. Ventral view:<br>Specimen: J. Selfin, University of Osnabruck,<br>Germany: | ORIGINALUL |



POS COE Axa 2 Consul Român pentru Modelas Sometor Recorculanto de Acvaciso coll STRS-CSNR 48745 COMTRACT DE FINANTARI ART, 622014 03.2014

# LSM 710 - Providing Support for Progress and Innovation

Taking advantage of increasingly powerful technologies, the biomedical sciences are leading the way to a deeper understanding of the complex mechanisms that are the foundation of living systems at the molecular, cellular, and tissue levels or a

The LSM 710 is the logical evolution of the successful LSM-Series from Carl Zeiss. It combines and surpasses the advantages and capabilities of all existing confocal systems. Working closely together with leading scientists worldwide, we have created an instrument that reflects the latest ideas and technological possibilities – an entire orchestra of innovations to accompany your research experiments.

For more than 160 years, Carl Zers bas provided the scientific community with the best technological instruments and related know-how. By means of professional consulting – and especially via system solutions tailored to users' exact needs – we have created the ideal conditions for modern research.

GINALUL





The LSM 710 on upright microscopes, such as the Axio Imager or the Axio Examiner, is ideal for research in neurobiology, physiology, and developmental biology.



## Sensitivity is the Key

POS CCE, Axa 2 Centrul Român pentru Modelarea Sistemator Recirculante de Acvacultura cod SMIS-CSNR 48745 CONTRACT DE FINANȚARE INR. 622/11.03.2014

Whether it is in live cell imaging, single molecule analysis, or imaging of minute structures such as yeast or DNA, the LSM 710 creates detailed, high-contrast images. CONFORM CU ORIGINALUL

For every demanding application in laser-scanning microscopy, the prerequisite is enhanced sensitivity and reduced background noise. The excellent sensitivity of the LSM 710 is combined with outstanding noise and excitation laser light suppression to deliver the best results, even with tricky preparations such as those with dense 3D tissue or cells growing directly on metallic substrates (e.g., gold). To achieve such performance, we have implemented a whole range of improvements.

- low-noise electronics with up to 30% longer sampling time per pixel via oversampling
- excellent contrast due to improved laser suppression by 100 to 1000 times (even with mirror like samples)
- an increase in sensitivity due to a new spectral grating and spectral-recycling loop design (efficiency ≥ 90%)
- an array detector with three times lower dark noise
- parallel 34-channel imaging over the entire wavelength range
- APD-imaging and photon counting

Digital gain function for extended sensitivity and perfect signal balance of up to 10 detection channels.

ENG PROPERTY

NELER

Same of the state

a yang sebeluk Sebeluk sebeluk Sebeluk sebeluk



» Sensitivity is the key feature in a confocal microscope. The LSM 710 achieves a high sensitive image acquisition with low noise level and provides reduced phototoxicity for experiments with living cells.«

Dr. Hideaki Mizuno, Brain Science Institute, Riken, Wako, Japan



Nerve bundles innervating muscle in a transgenic mouse, labeled with kusabira-orange, CFP and YFP. Dr. J. Carlos, MCD, Harvard University, Boston, USA

Spindle formation in mouse oocyte, labeled with Hoechst, Alexa 680. M. Schuh, EMBL, Heidelberg, Germany

Nerve fibers in tail of a zebrafish embryo, labeled with Alexa 488, CY3, CY5.





POS CCE, Axa 2 "Centrul Român pentru Modelarea Sistemeior Recirculante de Associativă"

Growing microtubules in Hela cells, labeled with GFP, Dr. L. Sironi, EMBL, Heidelberg, Germany





9

## **Flexibility in All Areas**

84

the state

 $\Big( = \sqrt{c} \, \lesssim \, 2$ 

. 65

POS COS, Axe 2 Summer Reproduced to Acvecum Easternable Reproduced to Acvecum Ecol ShilS-CSNR 48745 CONTRACT DE PRIMANTASE INR. 622/11,005,0014

# The LSM 710 allows you to use more dyes and look deeper into cells and tissues.

The new illumination and detection design gives you ultimate freedom for fluorescence microscopy. Capable of continuous spectral detection over the whole wavelength range with up to 10 dyes used simultaneously, the LSM 710 can perform virtually any application.

In addition, you have the option of adding more laser lines if your experiments require new excitation possibilities. Multicolor imaging can be performed to perfection, allowing you to use the latest fluorescent proteins without spectral crosstalk. Molecules, such as proteins, and their interactions can be analyzed using all current imaging methods.



RECTORAT

OBM CL



Color coded FLIM image (ps) of a 3-day-old zebrafish embryo. Whole mount stained for GFP transgene (Alexa Fluor 488), catecholaminergic systems (Alexa Fluor 555) and serotonergic cells (Alexa Fluor 594). Lifetime image acquired using 562 nm for excitation.

538

Specimen: T. L. Tay and R. Nitschke, University of Freiburg, Department of Developmental Biology and Life Imaging Center, Germany

a the other states - Alex Current world - Alex State Land - Alex Harton Carl North State



Use the latest dyes with extreme spectral properties.

POS CCE, Axa 2 Centrul Roman pentru Modelarea Sistemelor Recirculante de Acvacultura cod SMIS-CSNR 48745 CONTRACT DE FINANTARE NR. 622/11.03.2014

DI

11

The fast and flexible detection technology of the LSM 710 combined with the high performing In Tune (488 to 640 nm, > 1,5 mW per wavelength) means the fluorescence signal can be detected very close to the excitation wavelength. In addition, In Tune is the perfect flexible laser system for measuring fluorescence lifetimes of dyes (Pulse < 5 ps, 40 Hz) that couldn't be examined before. Also, with In Tune, you no longer need to consider the excitation wavelength when searching for a FRET pair. The wavelength range of the laser lets you measure the lifetime of any dye excited within the spectral range of 488 to 640 nm. Because of its low noise characteristics and stability, In Tune can be combined and used simultaneously with any additional laser available in the system, from near UV to far red.

The flexible beampath with the innovative TwinGate main beamsplitter provides up to 50 combinations of excitation laser lines and can be exchanged by the user. On the detection side, emission bands can be flexibly selected without emission filters or secondary dichroics due to new bandpass sliders in front of 2, 3 or 34 spectral detectors. Additional external detectors can be attached to the coupling port. The optics are designed for a range of 350 to 1100 nm and, as a result, lasers - including pulsed lasers and powerful bleach lasers - can be freely combined from near UV (405 nm), VIS, and IR (Ti:Sa) ranges. VFORMCU

Human Osteosarcoma labeled for Actin (Phalloidin-Alexa 532) and nuclei (Hoechst 33258). Using simultaneous excitation with 405 and 538 nm, you can achieve a clear separation of the signals with maximal signal intensity.

Human Osteosarcoma labeled for Actin (Phalloidin-Alexa 532) and nuclei (Hoechst 33258). Using simultaneous excitation with 405 and 520 nm, no clear separation of the signals can be achieved The signal intensity of the actin stain is not maximal.





The LSM 710 provides efficient, consistently verifiable results due to a more stable design with less mechanical tolerances, especially in spectral imaging.

The whole group of 2, 3, or 34 detectors is fixed, reproducing your spectral measurements reliably and without deviations. The new parallel spectral detection offers simultaneous 34-channel readout in lambda mode. Plus, a sequential acquisition mode is now available to increase the spectral resolution to 3 nm.

**Unique Precision and** 

Reproducibility

्रियोः स्टिब्रियोः संश्र

To get the best image data possible, we have conducted extensive research towards improving our unmixing software. By implementing the ideas published by leading scientists on how to optimize the spectral unmixing logic and reduce the effect of noise on the unmixing result, we have improved both the precision and the signal strength of the resulting crosstalk-free images. Up to 10 dyes can be acquired and separated at the same time. Systems with 2 or 3 channels also offer the same outstanding linear unmixing technology.

#### Hippocampus neurons in a Brainbow transgenic mouse, labeled with multiple hues of fluorescent proteins. Dr. J. Livet, MCB, Harvard University, Boston, US

Linear unmixing of 34 channels simultaneously and with calibrated detectors achieve perfect balance, even with vastly different signal intensities.

Literature: Neher R., Neher E.: Optimizing imaging parameters for the separation of multiple labels in a fluorescence image, J Microsc. 2004 Jan; 213(Pt 1): 46-62.





POS CCE, Axa 2

cod SMIS-CSNR 48745

NR. 622/11.03.201-



Maximum Ease of Use

POS CCE, Axa 2 Dentrol Român pentru Modelarea Sistemelor Recirculante de Acvacultură\* cod SMIS-CSNR 48745 CONTRACT DE FINANȚARE NR. 622/11.03.2014

The LSM 710 offers more efficient workflows and excellent ease of use. Improved serviceability means faster maintenance and reduced downtime for upgrades or repairs.

With its smaller size and reduced installation times, set up of the system is much less effort. Improved diagnostics tools, a new self-test software and an integrated calibration tool will let you keep it in optimal condition. Should you wish to invest in new methods later, there are simple paths for upgrading both the hardware components, and the ZEN 2008 software with its fantastic ergonomy and ease of use.

> Perfect 3D results in superior samples resulting from perfect adjustment; Submandibular gland of a mouse, labeled with ZO-1 antibody and YFP, S. Sheu, MCB, Harvard University, Boston, USA

Smart acquisition setup for easiest possible scan parameter setup by selecting dyes and experimental needs.



» As a multiuser facility, stability and reliability have always been at the forefront of our needs. Downtime and time used to ensure that the systems are performing to specification can be costly and very frustrating to our users. Prealignment and self test tools are a huge step forward and will not only free up experimental time but will also give me greater confidence in the scientific excellence being produced by our regular users.«

Dr. Peter O'Toole, Technology Facility, Biology, University of York, United Kingdom

194 13

HOS COE, Axe 2 but Román pentru Modelaren fer filodiculante de Acventiduit de SMIS-CSNR 46745 cyttembr DE FINANT/FRE bj/n/852/11.03.2014

## More Possibilities with Living Cells

14

Get more valid results in live cell imaging with the LSM 710 – thanks to less damaging and more stable conditions for your living cells.



Time lapse imaging of dividing NRK cells, labeled with GFP and HcRed. Specimen: E. Dultz, EMBL, Heidelberg, Germany



As a result of such improved capabilities you can observe your cells longer and at higher spatial and temporal resolutions. The LSM 710 ushers in improvements in almost every aspect, whether it involves faster scan speeds at lower zoom factors (i.e., larger fields of view with a field number of up to 20 mm in the intermediate plane) or more consistent imaging conditions with, for example, stable laser excitation or control of the focus plane using the Definite Focus attachment on the Axio Observer microscope stand. The trend towards more representative experiments with living cells also means analyzing the interactions of structures. Freely definable ROIs are essential for bleach and photoactivation experiments, whether it involves cancer research, cell death, the analysis of DNA repair proteins, protein synthesis or the detailed mechanisms of cell division. The LSM 710 offers ideal tools for manipulation of single and multiple ROIs with individual settings – at the fastest speeds possible.



| = 7-SIBUK                           |                            |           |             | 1100         |
|-------------------------------------|----------------------------|-----------|-------------|--------------|
| Bleaching                           |                            |           |             | a second     |
| Bleach settings                     | not defined                |           | -           | <b>B B 1</b> |
| Start Bleaching                     | after # scans              | 6         |             | of 2000      |
| Repeat Blench                       | after # scans              |           |             |              |
| Herations                           |                            |           |             |              |
| 458 488 514<br>Status 1<br>🔥 488 nm | 561 633<br>Framsmission (9 | 800<br>6] |             | 100 00       |
| a Time Series                       | 5                          |           |             |              |
| Cycles                              | 1                          |           | 2000<br>0 0 | i milee      |
|                                     |                            |           |             |              |

Flexible bleach and photoactivation functions

»Fast photoactivation experiments used to be very difficult with point scanning confocal microscopes. The faster scan rates and improved signal to noise of the LSM 710 now make it possible to analyze diffusion even of small soluble proteins with such a microscope.\*

Dr. Jan Ellenberg, EMBL, Heidelberg, Germany

Integrated Special Imaging Modes

POS CCE. Axa 2 Central Român pantra Modelareă Sistemoloc Recipolante de Acvecultură cold SM/6-CSNR 48745

CONTRACT DE PINANTARE NR. 623/11.03.2014



With its SNR and image quality, the LSM 710 offers possibilities beyond conventional imaging – such as Fluoresence Correlation Spectroscopy (FCS) and Image Correlation Spectroscopy (RICS) – allowing single molecules to be analyzed at a new level.

The new system is the first turnkey system to offer RICS, a method developed by E. Gratton and P. Wiseman. Unlike FCS, RICS requires no special hardware or APD detectors, and its analysis is done in the normal scanned image. Again unlike FCS, RICS produces a real image as a result. Nevertheless, both methods are complementary: FCS is more sensitive and gives higher count rates when molecule concentrations are low while RICS provides more precise analysis of many fast-moving molecules.



FCS and RICS use the confocal volume to trace single molecules.





ROS CCE. Axa 2 Countrul Richtán puesto Modelarea Siplumetici: Recinculable de Acvacultură Cod SMES-COMP 48745 CONTRACT DE FINANȚARE NR. 622/11.03.2014

Color coded FLIM image (ps) of hepatocytes stained for Cytochrome C (Alexa 488) and Mirochondria (Alexa 564). Lifetime image acquired using 568 nm for excitation. Specimen: R. Pick and R. Nitschke; University of Freiburg, Germany



When using pulsed lasers on the LSM 710 (e.g., with NLO systems), other methods can be used to trace molecules and even their spatial interaction.

Anisotropy imaging is another imaging method that offers you, in addition to intensity differences and the signal spectrum, another parameter of the emission light to investigate proteins. The **Conformation** required for this method can be supplied with, or retroited to the any LSM 710.

When excited by laser light, structured, fluorescence labeled proteins show a directed emission depending on the polarizing direction of the laser. Anisotropy and fluorescence light may vary according to the distance and bond of the molecules. Special filters ensure a very high extinction ratio of the respective other polarizing direction of the emission and, thus, images are of example ceptional contrast and information content.

Actin filaments labeled with AlexaFluor488-phalloidin in the Drosophila eye. Image showing the result of the evaluation of the Anisotropy of the specimen. Only in some rhabdomers the actin filaments are similarly oriented. Specimen: O. Baumann, University of Potsdam, Institute for Biochemy und Biology, Germany

FLIM allows for the analysis of the fluorescence lifetime, making it the ideal method for undertaking FRET experiments to analyze whether proteins are located closer than 10 nm apart and are thereby capable of interacting. The I SM 710 offers a direct coupling port so matching Becker Hickl FLIM detectors can be mounted to it.

#### Literature:

Digman M.A.; Brown C.M.; Sengupta P.; Wiseman P.W.; Horwitz A.R.; Gratton E.: Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys Journal, 2005 Aug; 89(2): 1317–27.

Raub C.B.; Unruh J.; Suresh V.; Krasieva T.; Lindmo T.; Gratton E.; Tromberg B.J.; George S.C.: Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys Journal, 2007 Dec 7.





Sistemelor Recirculante de Acvacultura" Services CSMIS-CSNR 48746 CONTRACT DE FINANTARE CATTOCO NR. 622/11.03.2014

ROS CCE, Axa 2 Centrul Roman pentru Modelarea

## Multiphoton Imaging Without Compromise

As a physiologist or neurobiologist, you need to be able to get deeper images of three-dimensional samples, e.g., brain tissue. The LSM 710 NLO lets you penetrate deeper and detect more light.

Improved femtosecond multiphoton technology lets you go from flat "caricatures" to a three-dimensional context so you can understand interrelations in complex biological systems. Improved NDD electronics and cascadable NDD modules allow spectral flexibility for multicolor NLO experiments. The LSM 710 NLO was co-developed with a matching fixed-stage microscope, the Axio Examiner. This lets us optimize our NDD technology to detect even the faintest signals. The tube lens of the Axio Examiner is specially designed to optimize the beam conditions to our Plan-Apochromat 20  $\times$  / 1.0 W objective, which provides an ideal solution for NLO imaging. The tSM 710 NLO goes even further, by offering you a unique GaAsP NDD unit integrated in the objective holder to provide the shortest beampath – with excellent quantum efficiency and twice as good SNR.

**DNFORM CU** 





我想得我 POS CCE, Axa 2 Ceruitus Român pentru Modelarea Sander and En relación Sittamelor Recirculante de Acvacultură" FINC DOG SMIS-CSNR 48745 体的现在分支中的基 Mouse: EYFP-expressing cortical pyramidal neuron 522/11.03.2014

Mouse: EYFF-expressing cortical pyramiaat neurons from layer V. Excitation with 920 nm. 3D-projection of an intravitally acquired stack of 600 single pictures. Specimen: F. Nadrigny, F. Kirchhoff, MPI for Experimental Medicine, Göttingen, Germany



LSM 710 NLO with Axio Examiner.



» Multiphoton imaging requires an efficient NDD light path. The LSM 710 NLO offers many improvements that result in brighter images and deeper penetration. Also, the configuration of NDD modules is very flexible, allowing simultaneous acquisition of many channels for multicolor imaging.«

Dr. Stephen Turney, MCB, Harvard University, Boston, USA

199

The advantage of confocal light microscopy: capturing the light emitted by a single plane of a sample.

1.000 4148 312 **Confocal Microscopy** 

122

20

A laser beam scans the specimen pixel by pixel and line by line. A pinhole conjugated to the focal plane obstructs the light emerging from objects outside that plane so that only light from objects that are in focus can reach the detector

The pixel data gathered using this method are then assembled to form an image that represents an optical section of the specimen and is distinguished by high contrast and high resolution in the X, Y and Z planes. Several images generated by means of shifting the focal plane can be combined into a 3D image stack.



1 V/Flex PTC laser ports (405, 440, In Tune; ps+cw)

FOS CCE, Axe (

CONTRACT DE FINANTARE NH. 622/11/03/2014

Control Framan peninu VA. Sistemator Recitcularite de Acrocultură COD SMIS-CSNR 48745

- 2 IR PTC laser port (tunable Ti:Sa)
- 3 Vis PTC laser ports & Vis AOTF
- 4 Monitoring diodes
- 5 InVis TwinGate beam splitter (upgradable)
- 6 Vis TwinGate beam splitter (user exchangeable)
- 7 Scan mirrors (FOV 20, 6k × 6k)
- 8 Master pinhole
- 9 Splitter for external channels
- 10 Spectral separation and recycling loop
- 11 Spectral beam guides
- 12 QUASAR PMT spectral channel # 1
- 13 QUASAR PMT spectral channels # 2–33 (or # 2)

13

- 14 QUASAR PMT spectral channel # 34 (or # 3)
- 15 Ext. channels (# 4 + 5: APDs, FLIM, FCS etc.)

#### The Beam Path

11

5 11

Danca a

Con Car

The unique design allows the best possible combination of efficiency, flexibility, maintenance and upgrade opportunities in a compact construction.

15

POS CCE, Axe 2 .Centrul Roman pentru Modelarea Istemelor Recirculartie de Acvecultear-cod SMS-CEVARY 48745 CONTRACT DE FINANTARE MR. 822/11.03.2014

## Innovations in Detail

Besides an optimized overall-design, the LSM 710 introduces four outstanding innovations to create the best conditions for quality and sensitivity of the fluorescence signals from the laser source to the final detection.

Less which felder and

ponto a acrociatora Into da acrociatora

PHASET ANE

RECTORA



## **PTC Laser Concept**

The LSM 710 features a revolutionary PTC laser concept: there is no longer any laser module. Instead, all lasers are so-called "pigtailed" versions, which can be plugged directly into the scanning module. Up to eight ports in the LSM 710 scanning module allow direct coupling for near-UV, VIS and IR-lasers in free combinations. As a fortunate by-product, you save space in your lab and reduce the heat generated by the lasers. Upgrades of future laser lines are easy and cost-effective.



## TwinGate Main Beamsplitter

The LSM 710 incorporates the new TwinGate main beam splitter to permit almost infinite excitation combinations. This combination of two high-transmission dichroic filter wheels lets you choose up to 100 combinations of laser lines for fluorescence excitation. Since four lines can be used simultaneously, this guarantees complete flexibility for your experiments. You can also exchange Vis-range filters for future laser upgrades, but that's not all – the new shape results in an absolutely outstanding suppression of the excitation laser light for improved SNR.

22





As a result of their even separation of colors, gratings are ideal or splitting light into its spectrum. The LSM 710 has another revolutionary feature: the spectral recycling loop, which provides a boost in signal by feeding any non-separated portion of the signal through the grating a second time. The resulting spectral signal is ideal for high resolution spectral imaging (up to 3 nm) or the simultaneous detection of up to 10 dyes. The LSM 710 also offers ultimate freedom since any portion of the spectrum can be guided to any detector unit.



#### **QUASAR** Detector

The LSM 710 employs a next generation QUASAR detector (Quiet Spectral Array) that offers two innovations. First, the sensitivity of our PMT array has been greatly enhanced by using a brand new model with three times lower dark noise. Part of this achievement comes from the improved match of the detection area with the beam dimensions. Second, there is not just one spectral detector but a choice between a two-channel, three-channel or full 34-channel configuration. All three offer excellent sensitivity, the lowest dark noise possible and 3–10 noise-free digital gains to adjust the balance of even the most extreme dye combinations.

23



#### 105 - 25 - QL: ZEN Software: The Perfect User Interface for Your Applications

#### The LSM 710 uses ZEN, ZEISS's efficient navigation software.

tor all the legist.

+ 0.1

24

ZEN offers not only a logical, easy-to-understand user interface but also an improved color scheme for work that involves microscopy

In this way, the monitor won't be a "floodlight" in your laboratory, constraining experiments with weak fluorescences and challenging the eye with a contrast bath. The ZEN workflow meets your intuitive, natural expectations. It offers exactly the tools you need for each step, presented in a clearly arranged way.



| ZEN 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a state of the local data | and the second se |                                                                           | 13 de-                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
| File Acquisition Maintain Macro Tools View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Workspace Zoom                                                            |                                                                     |
| 🖬 📕 🖗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wuruspace Configuration                                                   | -                                                                   |
| Course Acquisition Promising Marman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 013FITC-Phall GFP #       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | - 1                                                                 |
| onliguration not detined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Online Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | intensity                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                                                     |
| + Smart Setup 🗸 Show manual tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mode Veros at C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N. C                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seza Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EC Plan-wednular 102/0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l traje traje                                                             | at to a                                                             |
| New Auto Exposure Live Combinuous Snap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frame Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X 512 C X-Y Y 512 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Consty                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | 17 C                                                                |
| Z-Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Line Slep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y Y Opensal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>A</b> 0.6              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 📕 🙀 👘 🕺                                                                   | 61                                                                  |
| Time Series 10 Images<br>Bleaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 9 Low                                                                   | 1 Sec. 1                                                            |
| Tile Scan 7.50 MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pixel Dwell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 80 usec Scan Time 953 04 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co-localization           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - States                                                                  | 1.1 1                                                               |
| Region: Start Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Averaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 1                                                                      |                                                                     |
| Setup Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bal Depth 8 Bal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | De Car                                                              |
| Laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean · Direction · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unmitting 0.2 -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                                                     |
| Mode Character Mode a comultaneousi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Scan Area</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | 1. <b>19</b>                                                        |
| Sudch Irack every Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A 00 -                    | a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e caterings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a stranger                | 10 520 530 540 550 560 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | States and states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Emission wavelength (on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                                                                         |                                                                     |
| → ✓ Tract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACE 1                     | Emission wavelength (nm)<br>#CE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |                                                                     |
| ✓ Tract      DAPI      Forp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tracks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chahneir<br>GAPI<br>CGPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACE 1                     | Emission wavelength (nm)<br>ACE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATE1                                                                      | ACES                                                                |
| • 7 Tracs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tracks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Channeik<br>GARI<br>EGRP<br>Cy3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACE 1                     | Emission wavelength (nm)<br>ACE 2<br>Emission wavelength<br>(nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACE 1                                                                     | ACE 2                                                               |
| ✓ Tract           DAVI           CGFP           C33           cm           cm     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tracks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Channais<br>DAR<br>Corp<br>Cy3<br>Select all Uneelet all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACE 1                     | Emission wavelength (nm)<br>ACE 2 —<br>Enission wavelength<br>(nm)<br>502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACE 1                                                                     | ACE 2<br>1996                                                       |
| ✓ Traces           DAPA           EGFP           Cy3           Traces           Traces           Traces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Track1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Channais<br>DAR<br>CGRP<br>Cy3<br>Select all Universitial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACE 1                     | Emission wavelength (hm)<br>ACE 2 —<br>Enlission wavelength<br>(hm)<br>502<br>51 3<br>524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACE 1<br>98 1<br>158 4<br>255 0                                           | ACE 2<br>1996<br>255 0<br>157 0                                     |
| Trast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Track1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Channois<br>DAR<br>Cy3<br>Select all Universitial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACE 1                     | Emission wavelength (nm)<br>ACE 2 —<br>Enlission wavelength<br>(nm)<br>502<br>51 3<br>524<br>534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7                                  | ACE 2<br>1996<br>255 0<br>157 0<br>104 8                            |
| ✓ Trace1     OVP1     OV  | Track1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Channois<br>DAR<br>Cy3<br>Select at Uniselect at<br>455 443 515 541 594 613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACE 1                     | Emission wavelength (nm)<br>ACE 2 —<br>Enlipsion wavelength<br>(nm)<br>502<br>51 3<br>524<br>534<br>534<br>535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6                 | ACE 2<br>1996<br>2550<br>1570<br>1048<br>744<br>555                 |
| Channel Mode     Lambda Mode     Online Filingerg Intelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Track1<br>405<br>405 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Channois<br>DAR<br>Cy3<br>Select at Universe at<br>455 468 515 561 594 513<br>AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACE 1                     | Emission wavelength (nm)<br>ACE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3         | ACE 2<br>1996<br>2550<br>1670<br>1048<br>744<br>555<br>3366         |
| Channel Mode     Lambda Mode     Cnime Fingerpinning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tracks<br>Track1<br>Track1<br>405 nm<br>450 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Channois<br>CAIR<br>COAR<br>Cy3<br>Select all Universe all<br>455 468 515 561 594 E33<br>Additional Control<br>Additional Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACE 1                     | Emission wavelength (nm)<br>A/CE 2<br>Emission wavelength<br>(nm)<br>502<br>513<br>524<br>534<br>534<br>535<br>566<br>566<br>577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1936<br>2550<br>1570<br>1048<br>744<br>555<br>336<br>182   |
| V Track 1      DAP1      CGFP      Cy3      S0      Connet Mode      Lambda Mode      Cnime Fingerp Intillig      fradk1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tracks<br>Track1<br>405 nm<br>450 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channois<br>CAIR<br>COAR<br>Cy3<br>Select all Universet all<br>455 468 515 561 594 633<br>Administration<br>Administration<br>Coal<br>Coal<br>Coal<br>Coal<br>Coal<br>Coal<br>Coal<br>Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACE 1                     | Emission wavelength (nm)<br>ACE 2<br>Emission wavelength<br>(nm)<br>502<br>513<br>524<br>534<br>534<br>545<br>556<br>556<br>577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1935<br>2550<br>1970<br>1048<br>744<br>\$\$5<br>336<br>183 |
| V Track T     DuPi     DuPi     CGrP     Cy3      | Tracks<br>Track1<br>Crack1<br>Cos<br>405 mm<br>450 mp<br>A 561 mm<br>Potenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Channois<br>DAXI<br>GGP<br>Cy3<br>Deect al Uneelect al<br>456 468 511 561 554 533<br>Adamsets CF<br>02<br>02<br>460 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACE 1                     | Emission wavelength (nm)<br>ACE 2 —<br>Emission wavelength<br>(nm)<br>502<br>513<br>524<br>534<br>545<br>556<br>556<br>556<br>556<br>577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>61 6<br>59 3<br>94 7 | ACE 2<br>1995<br>2550<br>1670<br>1048<br>744<br>555<br>336<br>182   |
| Track     More     Lambda Mode     Chime Fingerprinting     radi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tracks<br>Track1<br>Track1<br>400<br>405 nm<br>450 nm<br>861 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channows<br>DAXI<br>GGP<br>Cy3<br>Select all Uneelect all<br>ASS 468 511 561 564 EX3<br>Addiministration<br>Addiministration<br>Call Control Control<br>Control Control Control<br>Control Control Control<br>Control Control Control<br>Control Control Control<br>Control Control Control<br>Control Control Control Control<br>Control Control Control Control<br>Control Control Control Control Control<br>Control Control Control Control Control Control<br>Control Control C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACE 1                     | Emission wavelength (nm)<br>ACE 2<br>Emission wavelength<br>(nm)<br>502<br>513<br>524<br>534<br>545<br>556<br>566<br>566<br>577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1996<br>2550<br>1570<br>1048<br>744<br>555<br>308<br>182   |
| V Tract     DAPI     DAPI     CGrP     Cy3     VOID 0     CGrP     Cy3     VOID 0     CONTRACT     CONTR | Tracks<br>Track1<br>405<br>405 nm<br>450 nm<br>8 S61 nm<br>EGFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channows<br>DAPI<br>GGP<br>Cy3<br>Seect all Unevent all<br>456 460 511 561 694 633<br>AD<br>Administration<br>02<br>12-5 unitsection<br>12-5 unitsection<br>13-5 unitsection<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACE 1                     | Emission wavelength (nm)<br>#CE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1996<br>2650<br>1570<br>1048<br>744<br>555<br>336<br>182   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tracks<br>Track1<br>405<br>405 nm<br>450 nm<br>861 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Channows<br>DAPI<br>GGP<br>Cy3<br>Seect all Unecest all<br>455 468 515 561 594 633<br>AD<br>Administration<br>02<br>10-5 unsection<br>14-0 un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACE 1                     | Emission wavelength (nm)<br>#CE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1996<br>2650<br>1570<br>1048<br>744<br>555<br>336<br>182   |
| Cramel Mode     Course Hugephreitig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tracks<br>Track1<br>405<br>405 mm<br>420 mm<br>420 mm<br>420 mm<br>420 mm<br>420 mm<br>420 mm<br>420 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Channows<br>DAPI<br>SGPP<br>Cy3<br>Deect all Unecest all<br>Seect all Unecest all<br>ASS 460 514 561 594 633<br>Additional<br>Districtions<br>Tablantoctes<br>Cy2 C<br>D2 C<br>D2 C<br>D2 C<br>D2 C<br>D2 C<br>D2 C<br>D2 C<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACE 1                     | Emission wavelength (nm)<br>#CE 2<br>Emission wavelength<br>(m)<br>502<br>513<br>524<br>524<br>534<br>545<br>566<br>566<br>577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1996<br>2550<br>1570<br>1048<br>744<br>555<br>336<br>189   |
| Charmed Mode     Charmed Mode     Charmed Mode     Control Mode     C | Tracks Track1 450 mm 450 mm 561 mm EGFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Channels<br>DAPI<br>GGP<br>Cy3<br>Deect all Unselect all<br>455 465 515 561 594 633<br>40<br>Administration<br>15 Syntection<br>15 Syntection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACE 1                     | Emission wavelength (nm)<br>#CE 2<br>Emission wavelength<br>(om)<br>502<br>513<br>524<br>534<br>534<br>545<br>566<br>586<br>577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1996<br>2550<br>1570<br>1048<br>744<br>555<br>336<br>182   |
| ✓ Tract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tracks Track1 Track1 400 405 mm 450 mm 658 m | Channels<br>DAPI<br>GGP<br>Cy3<br>Denct all Unselect all<br>455 465 515 561 694 633<br>Administration<br>14 System<br>Gan Master<br>Ogb1 Gan 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACE 1                     | Emission wavelength (nm)<br>#CE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACE 1<br>98 1<br>158 4<br>355 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1996<br>2550<br>1570<br>1048<br>744<br>555<br>336<br>183   |
| ✓ Tract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tracks Track1 Track1 405 405 405 mm 450 mm EGFP EGFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channels<br>DAM<br>Granels<br>Cy3<br>Denot all<br>Denot all<br>Denot all<br>Denot all<br>Denot all<br>Denot all<br>All<br>Cy3<br>Denot all<br>All<br>All<br>Cy3<br>Denot all<br>All<br>Cy3<br>Denot all<br>Cy3<br>Denot all<br>All<br>Cy3<br>Denot all<br>Cy3<br>Denot all<br>All<br>Cy3<br>Denot all<br>Cy3<br>Denot all<br>All<br>Cy3<br>Denot all<br>Cy3<br>Denot all<br>Cy3 |                           | Emission wavelength (nm)<br>#CE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1996<br>2550<br>1570<br>1048<br>744<br>555<br>336<br>183   |
| Charmed Mode     Lambda Mode     Control Mode     Co | Tracks Track1 Track1 Stann Stann Conno Stann Conno Stann Conno Con | Channels<br>DAM<br>Granels<br>Cy3<br>Select all Unovert all<br>AS 403 511 561 594 533<br>Administrator of<br>D2 1<br>02 2<br>14-5 403 511 561 594 533<br>Administrator of<br>D2 2<br>14-5 403 511 561 594 533<br>Administrator of<br>D2 2<br>14-5 404 511 561 594 533<br>Administrator of<br>D3 2<br>14-5 404 511 561 594 513<br>Administrator of<br>D3 2<br>14-5 404 511 561 594 513<br>Administrator of<br>D3 2<br>14-5 404 514 515<br>Administrator of<br>D3 2<br>14-5 404 514 515<br>Administrator of<br>D4 2<br>14-5 404 515<br>Administrator of<br>D4 405 515<br>Administrator of D4 400 515<br>Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | Emission wavelength (nm)<br>#OE 2<br>Emission wavelength<br>(om)<br>\$02<br>\$13<br>\$24<br>\$34<br>\$45<br>\$45<br>\$56<br>\$66<br>\$77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACE 1<br>98 1<br>158 4<br>255 0<br>176 7<br>106 0<br>81 6<br>59 3<br>34 7 | ACE 2<br>1936<br>2550<br>1570<br>1048<br>744<br>555<br>336<br>182   |

LOSA JURISCH Steward water Sustained Sales and the result takes and restlement takes at the Tokas takes at the tokas takes

PDS CCE, Axa 2 Centrul Român pentru Modelaréa Sistemolor Recirculante de Acvacultură" cod SMIS-CSNR 48745 CONTRACT DE FINANȚARE NR. 622/11.03.2014



POS CC5, Axa 2 "Centrul froman pentru Modelarea Sistamelor Recirculante da Acvacultură" cod SMIS-CSNR 48745 CONTEMCT DE FINANȚARE NR, 522/11.03.2014



| Microscopes       |                                                                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stands            | Upright: Axio Imager Z2, Axio Imager.M2p, Axio Examiner Z1, with tube or rear port;<br>Inverted: Axio Observer Z1 with side port or rear port                                                     |
| Z drive           | Smallest increments: Axio Imager.Z2, Axio Imager.M2p: < 25 nm; Axio Observer.Z1: < 25 nm; Axio Examiner: < 30 nm;<br>fast Piezo objective or stage focus accessory; Definite Focus unit for stand |
| XY stage (option) | Motorized XY-scanning stage, with Mark & Find function (xyz) and Tile Scan (mosaic scan);<br>smallest increments 1 μm (Axio Observer) or 0.2 μm (Axio Imager)                                     |
| Accessories       | Digital microscope camera AxioCam; integration of incubation chambers; micromanipulators; etc                                                                                                     |

| Scanning Module                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Models                           | Scanning module with 2, 3, or 34 spectral detection channels; high QE, $3 \times$ lower dark noise; up to 10 individual, adjustable digital gains; prepared for lasers from V (405) to IR                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Scanners                         | Two independent, galvanometric scan mirrors with ultra-short line and frame flyback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Scan resolution                  | $4 \times 1$ to $6144 \times 6144$ pixels; also for multiple channels; continuously variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Scanning speed                   | 14 $\times$ 2 speed stages; up to 12 5 frames/sec with 256 $\times$ 256 pixels; 5 frames/sec with 512 $\times$ 512 pixels (max 77 frames/sec 512 $\times$ 32); min 0.38 ms for a line of 512 pixels; up to 2619 lines per second                                                                                                                                                                                                                                                                                                                                                                                 |
| Scan zoom                        | 0.6 x to 40 x; digital variable in steps of 0.1 (on Axio Examiner 0.67 x to 40 x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Scan rotation                    | Free rotation (360 degrees), in steps of 1 degree variable; free xy offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Scan field                       | 20 mm field diagonal (max ) in the intermediate plan, with full pupil illumination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pinholes                         | Master-pinhole pre-adjusted in size and position, individually variable for multi-tracking and short wavelengths (eg. 405 nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Beam path                        | Exchangeable TwinGate main beamsplitter with up to 100 combinations of excitation wavelengths and outstanding laser light suppression;<br>optional laser notch filters for fluorescence imaging on mirror-like substrates (on request);<br>outcoupling for external detection modules (e.g., FCS, B&H FLIM); low-loss spectral separation with recycling loop for internal detection                                                                                                                                                                                                                             |
| Spectral detection               | Standard: 2, 3, or 34 simultaneous confocal fluorescence channels with highly sensitive low dark noise PMTs; spectral detection range freely selectable (resolution down to 3 nm); in addition, two incident light channels with APDs for imaging and single photon measurements; transmitted light channel with PMT; cascadable non-descanned detectors (NDD) with PMT or GaAsP NDD unit for Axio Examiner                                                                                                                                                                                                      |
| Data depth                       | 8-bit, 12-bit or 16-bit selectable; up to 37 channels simultaneously detectable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laser inserts                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laser inserts (VIS, V)           | (VIS, V, In <i>Tune</i> ) pigtail-coupled lasers with polarization preserving single-mode fibers; stabilized VIS-AOTF for simultaneous intensity control;<br>switching time < 5 µs, or direct modulation; up to 6 V/VIS-laser directly mountable into the scanhead; diode laser (405 nm, CW/pulsed) 30 mW;<br>diode laser (440 nm, CW+pulsed) 25 mW; Ar-laser (458, 488, 514 nm) 25 mW or 35 mW; HeNe-laser (543 nm) 1 mW; DPSS-laser (561 nm) 20 mW;<br>HeNe-laser (594 nm) 2 mW; HeNe-laser (633 nm) 5 mW, In <i>Tune</i> Laser, (488-640nm, <3nm width, pulsed) 1,5mW, (pre-fiber manufacturer specification) |
| External lasers<br>(NLO, VIS, V) | Prepared laser ports for system extensions; direct coupling of pulsed NIR lasers of various makes (including models with prechirp compensation);<br>fast intensity control via AOM; NIR-optimized objectives and collimation; fiber coupling (single-mode polarization preserving) of external manipulation<br>lasers of high power in the VIS range 488–561 nm (e.g., LSM 7 DUO-systems)                                                                                                                                                                                                                        |
| Electronics Module               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Real-time electronics            | Control of the microscope, the lasers, the scan module and other accessory components; control of the data acquisition and synchronization by real-time electronics; oversampling readout logic for best sensitivity and 2 × better SNR; data communication between real-time electronics and user PC via Gigabit-Ethernet interface with the possibility of online data analysis during image acquisition                                                                                                                                                                                                       |
| User PC                          | Workstation PC with abundant main and hard disk memory space; ergonomic, high-resolving 16:10 TFT flat panel display;<br>various accessories; operating system Windows VISTA 32 or 64-bit; multi-user capable                                                                                                                                                                                                                                                                                                                                                                                                    |

204

angler angler (\* 1997) \* see angler angler \* see angler angler \* see POS CCE. Axa 2 "Centrul Român pentru Modelarea Sistemalor Abeirculante de Acvaculană cod SMIS-CSNR 48745 CONTRACT DE FINANȚARE NR. 622/11.03.2014

| System configuration | Workspace for comfortable configuration of all motorized functions of the scanning module, the lasers and the microscope, saving and restoring of application-specific configurations (ReUse) |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                                                                                                                               |

Standard Software ZEN

| System self-test                          | Calibration and testing tool for the automatic verification and optimal adjustment of the system                                                                                                                                                                                                          |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Acquisition modes,<br>Smart setup         | Spot, line / spline, frame, z-stack, lambda stack, time series and all combinations (xyz l t); online calculation and display of ratio images; averaging and summation (line / framewise, configurable), step scan (for higher frame rates); smart acquisition setup by selection of dyes                 |  |  |  |  |
| Crop function                             | Convenient and simultaneous selection of scanning areas (zoom, offset, rotation)                                                                                                                                                                                                                          |  |  |  |  |
| RealROI scan,<br>spline scan              | Scanning of up to 99 arbitrarily shaped ROIs (regions of interest), pixel precise switching of the laser,<br>ROI definition in z (volume); scan along a freely defined line                                                                                                                               |  |  |  |  |
| ROI bleach                                | Localized bleaching of up to 99 bleach ROIs for applications such as FRAP (fluorescence recovery after photobleaching or uncaging, use of different speeds for bleaching and image acquisition; use of different laser lines for different ROIs                                                           |  |  |  |  |
| Multitracking                             | Fast change of excitation lines at sequential acquisition of multicolor fluorescence for reduction of signal crossian                                                                                                                                                                                     |  |  |  |  |
| Lambda scan                               | Parallel or sequential acquisition of image stacks with spectral information for each pixel                                                                                                                                                                                                               |  |  |  |  |
| Linear unmixing                           | Generation of crosstalk-free multi-fluorescence images with simultaneous excitation; spectral unmixing – online or offline, automatically or interactively, advanced logic with reliability figure                                                                                                        |  |  |  |  |
| Visualization                             | XY, orthogonal (xy, xz, yz); cut (3D section); 2 5D for time series of line scans; projections (maximum intensity); animations;<br>depth coding (false colors); brightness; contrast and gamma settings; color selection tables and modification (LUT); drawing functions                                 |  |  |  |  |
| Image analysis and operations             | Colocalization and histogram analysis with individual parameters; profile measurements on any line; measurement of lengths, angles, surfaces, intensities etc, operations: addition, subtraction, multiplication, division, ratio, shift, filtering (low pass, median, high-pass, etc, also customizable) |  |  |  |  |
| Image archiving,<br>exporting & importing | Functions for managing of images and respective recording parameters; multi-print function;<br>over 20 file formats (TIE_BMP_IPG_PSD_PCX_GIE_AVL_Quicktime_etc) for export                                                                                                                                |  |  |  |  |

| <b>Optional Software</b>                    |                                                                                                                                                                                                |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LSM Image<br>VisArt plus                    | Fast 3D and 4D reconstruction; animation (different modes: shadow projection, transparency projection, surface rendering);<br>package 3D for LSM with measurement functions upon request       |
| 3D-Dekonvolution                            | Image restoration on the basis of calculated point-spread function (modes: nearest neighbor, maximum likelihood, constraint iterative)                                                         |
| Physiologie/<br>Ion concentration           | Extensive analysis software for time series images; graphical means of ROI analysis;<br>online and offline calibration of ion concentrations                                                   |
| FRET plus                                   | Recording of FRET (fluorescence resonance energy transfer) image data with subsequent evaluation;<br>supports both the methods acceptor photobleaching and sensitized emission                 |
| FRAP                                        | Wizard for recording of FRAP (fluorescence recovery after photobleaching) experiments with subsequent analysis of the intensity kinetics                                                       |
| Visual Macro Editor                         | Creation and editing of macros based on representative symbols for programming of routine image acquisitions,<br>package multiple time series with enhanced programming functions upon request |
| VBA-Macro-Editor                            | Recording and editing of routines for the automation of scanning and analysis functions                                                                                                        |
| Topographie-Paket                           | Visualization of 3D surfaces (fast rendering modes) plus numerous measurement functions (roughness, surfaces, volumes)                                                                         |
| StitchArt plus                              | Mosaic scan for large surfaces (multiple XZ profiles and XYZ stacks) in brightfield and fluorescence mode                                                                                      |
| ICS Image Correlation<br>Spectroscopy (PMT) | Single molecule imaging and analysis for all LSM 710 systems with PMT detectors (published by Gratton)                                                                                         |
| FCS/ConfoCor Basic,<br>Diffusion, Fitting   | FCS and FCCS single molecule analysis for systems with ConfoCor 3 (APD) extension                                                                                                              |
|                                             |                                                                                                                                                                                                |

FCS Module PCH Photon counting histogram extension for systems with ConfoCor 3 (APD) extension



POS CCE, Axa 2 Centrul Român pentru Modularea Sistemelor Recirculante de Acvacultură" cod SMIS-CSNR 48745 CONTRACT DE FINANȚARE NR, 622/11.03.2014 推ったたい

Patents: www.zeiss.de/micro-patents

14 4

Literature: www.zeiss.de/lsm

14

















Contract De Finant for All Applications

Centrul Ro

Sistemelor Recircul

Section of

Broaleroa

AE

"cultura"



#### Technology beyond the limits of traditional confocal systems

• PTC lasers - upgradeable ports for outstanding excitation flexibility

Ideal geometry main beam splitter for outstanding laser light suppression

• TwinGate – exchangeable main beam splitter with > 50 combinations

- Definite focus unit on microscope stand for focus stability
- Cascadable NDDs 2–8 on the microscope stand for multicolor NLO detection
- Coupling port for extension units, e.g., for FCS, FLIM and photon counting
- Spectral recycling loop for low-loss spectral separation and ultimate stability
- QUASAR: parallel spectral detector with best SNR
- RICS for quantitative single molecule analysis in standard images



|                             | 2-/3-channel | 34-channel | DUO extension | NLO extension | APD extension |
|-----------------------------|--------------|------------|---------------|---------------|---------------|
| 3D examinations             | •••          | •••        |               |               |               |
| Multifluorescence           |              |            |               |               |               |
| Colocalization              | •••          | •••        |               |               |               |
| Spectral imaging            | ••           | •••        |               |               |               |
| Live cell imaging           | •••          | •••        |               |               |               |
| lon imaging                 |              | •••        |               |               |               |
| RICS                        | •••          | •••        |               |               |               |
| FLIM (by Becker & Hickl)    | •••          | •••        |               |               |               |
| FRET (various methods)      | •••          | •••        |               |               |               |
| FRAP und FLIP               | ••           | ••         | •••           |               |               |
| Photoactivation/-conversion | ••           | ••         |               |               |               |
| Uncaging                    | •            | •          | •••           | ••            |               |
| In-vivo examinations        |              |            |               | •••           |               |
| 3D in-depth imaging         |              |            |               |               |               |
| FCS auto-correlation        |              |            |               |               | •••           |
| FCS cross-correlation       |              |            |               |               |               |

RECTORA Carl Zeiss Microlmaging GmbH NALUL 05" 07740 Jena, Germany DIN BioSciences | Jena Location Phone: +49 3641 64 3400 Telefax: +49 3641 64 3144 E-Mail : micro@zeiss.de www.zeiss.de/micro

05 ā

R